Path:  Home   >  Magnitude homology
Magnitude homology
Description:  Magnitude homology is a homology theory of enriched categories, proposed by Michael Shulman late last year. For ordinary categories, it is the usual
homology of a category (or equivalently, of its classifying space). But for metric spaces, regarded as enriched categories à la Lawvere, magnitude
homology is something new. It gives truly metric information: for instance, the first homology of a subset X of R^n detects whether X is convex.

Like all homology theories, magnitude homology has an Euler characteristic, defined as the alternating sum of the ranks of the homology groups. Often
this sum diverges, so we have to use some formal trickery to evaluate it. In this way, we end up with an Euler characteristic that is often not an
integer. This number is called the "magnitude" of the enriched category. In topological settings it is the ordinary Euler characteristic, and in
metric settings it is closely related to volume, surface area and other classical invariants of geometry.

Date:  2017-04-11
Start Time:   16:00
Speaker:  Tom Leinster (Univ. of Edinburgh, UK)
Institution:  University of Edinburgh, UK
Place:  Room 5.5
Research Groups: -Algebra, Logic and Topology
See more:   <Main>  
© 2012 Centre for Mathematics, University of Coimbra, funded by

Science and Technology Foundation

Powered by: rdOnWeb v1.4 | technical support