A model for phase transitions with competing terms
 
 
Description: 

In this work we study, via $\Gamma$-convergence techniques, the asymptotic behaviour of a family of coupled singular perturbations of a non-convex functional of the type $$\int_\Omega f(u(x),\nabla u(x),\rho(x)) \, dx $$ as a variational model to address  two-phase transitions problems under the volume constraints $\int_\Omega u(x)\, dx=V_f,$ $\int_\Omega \rho(x)\, dx =V_s,$ and where the additional unknown $\rho$ interplays with $\nabla u$ in the formation of interfaces.

Joint work with: Ana Cristina Barroso and José Matias

Date:  2016-05-12
Start Time:   14:30
Speaker:  Margarida Baía (IST, Lisboa)
Institution:  IST Lisboa
Research Groups: -Analysis
See more:   <Main>  
 
© Centre for Mathematics, University of Coimbra, funded by
Science and Technology Foundation
Powered by: rdOnWeb v1.4 | technical support