|
Description: |
In a real vector space addition is settled by scalar multiplication. This makes possible to describe smooth vector bundles as manifolds endowed with a nice action of the multiplicative monoid of the real numbers. In this talk I will deal with vector bundles over Lie groupoids and algebroids. Lie groupoids can be thought of as presentations for singular smooth spaces, and Lie algebroids are their infinitesimal counterpart. Vector bundles over them help us to understand the geometry of our singular spaces. I will present definitions and examples, provide a characterization by using the multiplicative monoid, and discuss the integration of these structures. This is part of a joint work with H. Bursztyn and A. Cabrera.
|
Date: |
|
Start Time: |
15:00 |
Speaker: |
Matias del Hoyo (IST, Lisboa)
|
Institution: |
Instituto Superior Técnico - Lisboa
|
Place: |
Sala 2.5
|
Research Groups: |
-Geometry
|
See more:
|
<Main>
|
|