Path:  Home   >   Inverse monoids and immersions of cell complexes
 
Inverse monoids and immersions of cell complexes
 
 
Description:  In the talk, we study immersions between cell complexes using inverse monoids. By an immersion f : D -> C between cell complexes, we mean a continous map which is a local homeomorphism onto its image, and we further suppose that commutes with the characteristic maps of the cell complexes. We describe immersions between finite-dimensional connected Delta-complexes by replacing the fundamental group of the base space by an appropriate inverse monoid. We show how conjugacy classes of the closed inverse submonoids of this inverse monoid may be used to classify connected immersions into the complex. This extends earlier results of Margolis and Meakin for immersions between graphs and of Meakin and Szakacs on immersions into 2-dimensional CW-complexes.
Date:  2017-10-17
Start Time:   15:00
Speaker:  Nora Szakács (CMUP, Univ. Porto)
Institution:  CMUP, Univ. Porto
Place:  Room 5.5
Research Groups: -Algebra, Logic and Topology
See more:   <Main>  
 
     
© 2012 Centre for Mathematics, University of Coimbra, funded by

Science and Technology Foundation

Powered by: rdOnWeb v1.4 | technical support