Extremal behavior of chaotic dynamical systems
 
 
Description:  This talk is about the study of rare events for chaotic dynamical systems.We will address this issue by two approaches. One regards the existence of Extreme Value Laws (EVL) for stochastic processes obtained from dynamical systems, by evaluating an observable function (which achieves a global maximum at a single point of the phase space) along the orbits of the system. The other has to do with the phenomenon of recurrence to arbitrarily small sets, which is commonly known as Hitting Time Statistics (HTS). We will show the connection between the two approaches both in the absence and presence of clustering. Clustering means that the occurrence of rare events has a tendency to appear concentrated in time. The strength of the clustering is quantified by the Extremal Index (EI), which takes values between 0 and 1. The stronger the clustering, the closer the EI is to 0. No clustering means that the EI equals 1. Using the connection between EVL and HTS we associate the existence of an EI less than 1 to the occurrence of periodic phenomena.
Date:  2017-03-08
Start Time:   15:00
Speaker:  Ana Cristina Moreira Freitas (CMUP, Univ. Porto)
Institution:  CMUP
Place:  Room 2.5
Organization:  UC|UP Joint PhD Program in Mathematics
See more:   <Main>   <UC|UP MATH PhD Program>  
 
© Centre for Mathematics, University of Coimbra, funded by
Science and Technology Foundation
Powered by: rdOnWeb v1.4 | technical support