Geometry of numerical range of linear pencils

Fatemeh Esmaeili Taheri ${ }^{1}$ Joint work with Natalia Bebiano ${ }^{1}$
${ }^{1}$ CMUC - Centro de Matemática da Universidade de Coimbra, Portugal

Abstract

Let A, B be $n \times n$ (complex) matrices. The numerical range of the linear pencil $A-\lambda B$ where λ is a complex number, is the set $$
W(A, B)=\left\{x^{*}(A-\lambda B) x: x \in \mathbb{C}^{n},\|x\|=1, \lambda \in \mathbb{C}\right\} .
$$

We are mainly interested in the study of the numerical range of a linear pencil, $A-\lambda B$, when one of the matrices A or B is Hermitian and $\lambda \in \mathbb{C}$.

In this talk, the geometrical properties of $W(A-\lambda B)$, with emphasis to its boundary are presented.

We characterize $W(A, B)$ for matrices of small dimensions in terms of certain algebraic curves. The results are illustrated by numerical examples.

Keywords

Numerical range, Linear pencil, Generalized eigenvalue problem, Plane algebraic curve.

References:

Bebiano, N, da Providencia, J and F. Esmaeili (2016). The characteristic polynomial of linear pencils of small size and the numerical range. To apear.

Chien, M. T, and H. Nakazato (2002). The numerical range of linear pencils of 2-by-2 matrices. Linear Algebra Appl. 341, 69-100.

Horn, R.A and C. R. Johnson (2013). Matrix analysis. Cambridge University Press, Cambridge.

Horn, R.A and C. R. Johnson (1994). Topics in matrix analysis. Cambridge University Press, Cambridge.

Psarrakos, P.J. (2000). Numerical range of linear pencils. Linear Algebra Appl. 317, 127-141.

Rodman, L and C. K. Li (1994). Numerical range of matrix polynomials. SIAM J. Matrix Anal. Appl. 15, 1256-1265.

