On finite simple quotients of triangle groups

Claude Marion
CMUP - Universidade do Porto

February 20, 2019

Abstract

Given a triple (a, b, c) of positive integers, a finite group is said to be an (a, b, c)-group if it is a quotient of the triangle group $$
T_{a, b, c}=\left\langle x, y, z: x^{a}=y^{b}=z^{c}=x y z=1\right\rangle .
$$

Let $G_{0}=G\left(p^{r}\right)$ be a finite quasisimple group of Lie type with corresponding simple algebraic group G. Given a positive integer a, let $G_{[a]}=\left\{g \in G: g^{a}=1\right\}$ be the subvariety of G consisting of elements of order dividing a, and set $j_{a}(G)=\operatorname{dim} G_{[a]}$. Given a triple (a, b, c) of positive integers, we conjectured a few years ago that if $j_{a}(G)+j_{b}(G)+j_{c}(G)=2 \operatorname{dim} G$ then given a prime p there are only finitely many positive integers r such that $G\left(p^{r}\right)$ is an (a, b, c)-group. We present some recent progress on this conjecture and related results: in particular the conjecture holds for finite simple groups.

