n-Algebras admitting a multiplicative basis

José M. Sánchez Delgado
CMUC - Centro de Matemática da Universidade de Coimbra, Portugal

Abstract

Let A be a n-algebra of arbitrary dimension and over an arbitrary base field \mathbb{F}. A basis $B=\left\{e_{i}\right\}_{i \in I}$ of A is multiplicative if for any $i_{1}, \ldots, i_{n} \in I$ we have either $$
\left\langle e_{i_{1}}, \ldots, e_{i_{n}}\right\rangle=0 \text { or } 0 \neq\left\langle e_{i_{1}}, \ldots, e_{i_{n}}\right\rangle \in \mathbb{F} e_{j}
$$ for some (unique) $j \in I$. We show that if A admits a multiplicative basis then it decomposes as the direct sum $$
A=\oplus_{i \in I} A_{i},
$$ of well-described ideals admitting each one a multiplicative basis. Also the minimality of A is characterized in terms of the multiplicative basis and it is shown that, under certain conditions, the above direct sum is by means of the family of its minimal ideals admitting a multiplicative basis.

