A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations

Léonard Monsaingeon CAMGSD-IST, Universidad de Lisboa

In this talk I will discuss some recent results obtained with D. Kinderlehrer (Carengie Mellon Univ.) and X. Xu (Purdue Univ.) for the Poisson-Nernst-Planck equations

$$t \ge 0, \ x \in \mathbb{R}^d, \ d \ge 3: \begin{cases} \partial_t u = \Delta u^m + \operatorname{div}(u\nabla(U + \Psi)), \\ \partial_t v = \Delta v^m + \operatorname{div}(v\nabla(V - \Psi)), \\ -\Delta \Psi = u - v. \end{cases}$$
(PNP)

The unknowns $u, v \geq 0$ represent the density of some positively and negatively charged particles, U, V are prescribed confining potentials, $\Psi = (-\Delta)^{-1}(u-v)$ is the (nonlocal) self-induced electrostatic potential, and $m \geq 1$ a fixed non-linear diffusion exponent. We show that (??) is the gradient flow of a certain energy functional in the metric space $(\mathcal{P}(\mathbb{R}^d), \mathcal{W}_2)$ of Borel probability measures endowed with the quadratic Wasserstein-Rubinstein-Kantorovich distance \mathcal{W}_2 . The gradient flow approach in $(\mathcal{P}(\mathbb{R}^d), \mathcal{W}_2)$ is closely related to the theory of optimal mass transport and has successfully been employed for several scalar PDEs (Fokker-Planck, Porous Media, Keller-Segel, thin film...) We exploit this variational structure in order to semi-discretize (in time) the system and construct approximate solutions by means of the DeGiorgi minimizing movement. Sending the time step $h \downarrow 0$ we retrieve global weak solutions for initial data with low integrability and without regularity assumptions. In addition to energy monotonicity we also recover some regularity and new L^p estimates. The proof deals with linear and nonlinear diffusions (m = 1 and m > 1) in a unified energetic framework.