Pretorsion theories and internal preorders

Marino Gran Université catholique de Louvain

The notion of *pretorsion theory* is a wide extension of the classical notion of torsion theory in an abelian category. In this talk we shall recall this notion and its basic properties, present a couple of new examples of pretorsion theories, and describe some monotone-light factorization systems naturally arising in these contexts.

The category $\operatorname{PreOrd}(\mathbb{C})$ of internal preorders in an exact category \mathbb{C} contains the pretorsion theory $(\operatorname{Eq}(\mathbb{C}), \operatorname{ParOrd}(\mathbb{C}))$, where $\operatorname{Eq}(\mathbb{C})$ and $\operatorname{ParOrd}(\mathbb{C})$ are the full subcategories of internal equivalence relations and of internal partial orders in \mathbb{C} , respectively. We then observe that $\operatorname{ParOrd}(\mathbb{C})$ is a reflective subcategory of $\operatorname{PreOrd}(\mathbb{C})$ such that each component of the unit of the adjunction is a pullback-stable regular epimorphism. The reflector $\operatorname{PreOrd}(\mathbb{C}) \to \operatorname{ParOrd}(\mathbb{C})$ induces an admissible categorical Galois structure. When \mathbb{C} is the category Set of sets, we show that this reflection induces a monotone-light factorization system in $\operatorname{PreOrd}(\operatorname{Set})$. A topological interpretation of our results in the category of Alexandroff-discrete spaces is also given, via the well-known isomorphism between this latter category and $\operatorname{PreOrd}(\operatorname{Set})$. Finally, some new observations about similar results in the category of preordered groups will be made.

This work is mainly based on a collaboration with Alberto Facchini and Carmelo Finocchiaro [1, 2]. The results concerning the category of preordered groups come from a recent work in collaboration with Aline Michel [3].

References

- A. Facchini, C. Finocchiaro and M. Gran, A new Galois structure in the category of internal preorders, Theory Appl. Categories, Vol. 35 (2020) 326-349.
- [2] A. Facchini, C. Finocchiaro and M. Gran, Pretorsion theories in general categories J. Pure Appl. Algebra Vol. 225 (2) (2021) 106503.
- M. Gran and A. Michel, Torsion theories and coverings of preordered groups, https://arxiv.org/abs/2005.07937, preprint (2020).