conjecture of Alon-Tarsi

Carlos Gamas ${ }^{1}$

Abstract

A latin square is a $n \times n$ table filled with different symbols, which we may take to be $1, \cdots n$, in a such a way that each symbol occurs exactly once in each row and exactly once in each column.

The sign of a row or column of a latin square, L, is its sign as a permutation of the set $\{1, \cdots, n\}$. A latin square is column(row) even if the product of n column(row) sign is 1 . The sign, $s(L)$, of L is the product of $2 n$ column and row signs. L is even if $s(L)=1$ and odd if $s(L)=-1$.

In 1986 Alon and Tarsi conjectured the following
Conjecture 1. Let n be an even integer. Then $\Sigma s(L) \neq 0$, where the sum runs over all latin squares L of order n.

We write $C E L S(n)$ and $C O L S(n)$ to denote the number of column even and column odd latin squares of order n respectively.

In [7,Conjecture 3] was proven that conjecture 1 is equivalent to the following

Conjecture 2. If n is even, then $C E L S(n) \neq C O L S(n)$.
Let $a_{i, j}=n(i-1)+j, i, j=1, \cdots, n$ distinct natural numbers. Consider the following table filled with the $a_{i, j}$

$$
\begin{array}{rlr}
a_{1,1} & \ldots & a_{1, n} \\
\vdots & \ldots & \vdots \tag{0,1}\\
a_{n, 1} & \ldots & a_{n, n}
\end{array}
$$

Let ζ be the following permutation of $S_{n^{n}}$

$$
\zeta=\left(a_{1,1}, \ldots, a_{n, 1}\right) \cdots\left(a_{1, i}, \ldots, a_{n, i}\right)^{i} \cdots\left(a_{1, n-1}, \cdots, a_{n, n-1}\right)^{n-1} .
$$

[^0]Let H_{1} be the subgroup of $S_{n^{n}}$

$$
\begin{equation*}
H_{1}=S_{\left.\left\{a_{1,1}, \ldots, a_{1, n}\right\} \times \cdots \times S_{\{ } a_{n, 1}, \ldots, a_{n, n}\right\} .} \tag{0.2}
\end{equation*}
$$

Let λ be the irreducible character associated to the Young diagram $\left(n^{n}\right)$ and let $1_{H_{1}}$ be the identity character of H_{1}. Let

$$
\varphi_{\lambda, 1_{H_{1}}}^{H_{1}}(g)=\frac{1}{\left|H_{1}\right|} \sum_{h \in H_{1}} \lambda(g h), g \in S_{n^{n}}
$$

be the spherical function associated to λ and $1_{H_{1}}$. We prove that conjecture 2 is true if and only if

$$
\varphi_{\lambda, 1_{H_{1}}}^{H_{1}}(\zeta) \neq 0 .
$$

[^0]: ${ }^{1}$ Departamento de Matemática-Universidade de Coimbra e-mail: gamas@mat.uc.pt

