conjecture of Alon-Tarsi

Carlos Gamas ¹

Abstract

A latin square is a $n \times n$ table filled with different symbols, which we may take to be $1, \dots, n$, in a such a way that each symbol occurs exactly once in each row and exactly once in each column.

The sign of a row or column of a latin square, L, is its sign as a permutation of the set $\{1, \dots, n\}$. A latin square is column(row) even if the product of n column(row) sign is 1. The sign, s(L), of L is the product of 2n column and row signs. L is even if s(L) = 1 and odd if s(L) = -1.

In 1986 Alon and Tarsi conjectured the following

Conjecture 1. Let n be an even integer. Then $\Sigma s(L) \neq 0$, where the sum runs over all latin squares L of order n.

We write CELS(n) and COLS(n) to denote the number of column even and column odd latin squares of order n respectively.

In [7,Conjecture 3] was proven that conjecture 1 is equivalent to the following

Conjecture 2. If n is even, then $CELS(n) \neq COLS(n)$.

Let $a_{i,j} = n(i-1) + j$, $i, j = 1, \dots, n$ distinct natural numbers. Consider the following table filled with the $a_{i,j}$

$$a_{1,1} \ldots a_{1,n}$$

$$\vdots \ldots \vdots$$

$$a_{n,1} \ldots a_{n,n}$$

$$(0. 1)$$

Let ζ be the following permutation of S_{n^n}

$$\zeta = (a_{1,1}, \dots, a_{n,1}) \cdots (a_{1,i}, \dots, a_{n,i})^i \cdots (a_{1,n-1}, \dots, a_{n,n-1})^{n-1}.$$

 $^{^{1}\}mbox{Departamento}$ de Matemática-Universidade de Coimbra e-mail: gamas@mat.uc.pt

Let H_1 be the subgroup of S_{n^n}

$$H_1 = S_{\{a_{1,1},\dots,a_{1,n}\}} \times \dots \times S_{\{a_{n,1},\dots,a_{n,n}\}}.$$
 (0. 2)

Let λ be the irreducible character associated to the Young diagram (n^n) and let 1_{H_1} be the identity character of H_1 . Let

$$\varphi_{\lambda,1_{H_1}}^{H_1}(g) = \frac{1}{|H_1|} \sum_{h \in H_1} \lambda(gh) , g \in S_{n^n}$$

be the spherical function associated to λ and 1_{H_1} . We prove that conjecture 2 is true if and only if

 $\varphi_{\lambda,1_{H_1}}^{H_1}(\zeta) \neq 0.$