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Faced with

) )

everybody continues with



However, the Yigu yanduan of Li Ye prefers :
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Modern occidental science is supposed to begin with
Galileo, who throws a ball from the Pisa tower and

records its position at regular intervals of time :

I, IV, IX, XVI, XXV, XXXVI, ...



The law is a little more complicated, but philosophy

comes to the rescue :

Quando, dunque, osservo che una pietra, che discende dall’alto
a partire dalla quiete, acquista via nuovi increment: di
velocita, perché non dovrei credere che tali aumenti avvengano
secondo la pt semplice e pi ovvia proporzione? Ora, se
consideriamo attentamente la cosa, non troveremo nessun
aumento o incremento piu semplice di quello che aumenta
sempre nel medesimo modo ....... quel moto che in temp1

equali, comunque presi, acquista equali aumenti di velocita.



In short, if it is not the increment of space which is

uniform, it must be the increment ot speed.

Galileo’s method would indeed work for any polynomial

law !

ACE> [seq( n"3-2*n+3,n=1..10)];
[2, 7, 24, 59, 118, 207, 332, 499, 714, 983]



The solution of such a problem was already known at the

very beginning of astronomy : compute differences, iterate.

7 24 99 118 207 332 499
17 39 09 89 125 167
12 18 24 30 36 42
6 6 6 6 6
0 0 0 0

From the first diagonal, one can reconstruct (and

understand) the original sequence.



However, Chinese mandarins had more serious problems

to solve than throwing balls.

For example, in the Jade Mirror of the four unknowns one
finds

A mandarin recruits soldiers according to cubic numbers.
He begins with a 3-feet cube. Then, he increases the side
of the cube by one foot each time. Fach soldiers receives a
daily allowance of 250 sapeques. 23400 soldiers have been
recrutted, and the total expenditure was 23462 silver taels.

In how many days were they recruited ¢



UNE HISTOIRE DES MATHEMATIQUES CHINOISES

Notons f(n) le nombre de personnes recrutées le n-ieme jour.

n f(n) différence 2¢ différence 3¢ différence 4¢ différence
0 0
N3l (A,)
1 277 3y (A)
Nplea 0 T24)
2 o1 T~ — T A)
Neo1s \\30\/
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La quatriéme différence étant constante, on aura comme interpolation poly-
nomiale :

f(n) = nA,+ n(n=1)A,/21 + n(n-1)(n - 2)A,/3} + n(n—1)(n-2)(n-3)A,/4!
Dans le cas présent, f(n) = 23 400.

On obtient n = 15 comme une solution de cette équation.

Issue des problemes d’'interpolation en astronomie, I'«art de la diffé-
rence pour le recrutement » utilise les différences d’ordre 4.

Ici, le «cdté de 3 pieds» n’a rien a voir avec une longueur: les
hommes étant recrutés suivant les nombres cubiques, le premier jour,
3% = 27 hommes sont recrutés ; on ajoute ensuite un pied, c’est-a-dire
que le deuxieme jour, 4° = 64 hommes sont recrutés. La méthode de
résolution est introduite par la formule : « L’art dit: ». Elle correspond
a la formule d’interpolation utilisant les différences d’ordre 4.

La formule d’interpolation inventée sous les Sui par Liu Zhuo s’ar-
rétait & ordre 2 ; dans le Miroir de jade des quatre inconnues, elle est



However, comets are not likely to appear at regularly
spaced times. How to treat them ? This is Newton who,
while working on the Principia found how to transform a

discrete set of data into an algebraic function :

normalize differences
by
dividing them

by the interval of time



Here is the preceding set of data, minus three observations :

7 _ 59 _ 332 199
2 =26 22 =91 167
2 =7 © =13 2 =19
s=1 %
0

According to Newton, the comet position f(t), known at

times tg,%t1,..., 18 :

F(t) = fto) + fo(t —to) + fO9(t —to)(t —t1) + - --

obtaining the coefficients f2, 29, ... thanks to the
preceding method of dividing differences.



46 Approaches to finite differences [1, 1, §3]

vel semper decrescant: Hoc modo per bisectionem procedi potest usqg dum®®
differentiz quarte minores sint quam 32.@

Possent aliz hujusmodi regule tradi sed mallem rem omnem una regula
generali complecti et ostendere quomodo series quavis in loco imperato inter-
calari®® possit. Exponatur series per lineas Ap, Bg, Cr, Ds, Et, Iy, Gw &c ad
lineam AG  perpendiculariter
erectas & intervalla terminorum s W

per partes linex illiusAABjB BC, . 0 iy

CD, DE &c.®® Fac f;B =, r :
B—C ., C—D_ P !

BC =h2, CD = &c. Item }1 f|3 | - | | L
b _bzzc —_ c2 Bb_ ¢3 b 5 B 8 B

—%—AC ? -lB.D ? 1CE ¢ o2 P o 5

6‘—6‘2 6‘2—6‘3 0 d P a
&c. Dein TaD~ =d, 1BE =d%, s P
3 g P d—d? VA L
ECF &[c]. Porro =+ A 7= 2
@& &c. T =f [&c] et tib dad fi
= = a mo

“IBF —¢? &c. Tunc =2 T A F [&c] et sic in sequentibus usg a. nem operis,

dividendo semper dlﬁ"erentzas primas per intervalla terminorum quorum sunt
differentiz, secundas per dimidium duorum intervallorum quibus respondent,
tertias per tertiam partem trium & sic porrd pergendo usg dum in ultimo loco
differentia satis exigua sit.®® Hoc peracto capiantur tum terminorum tum
differentiarum prime 4, b, ¢, d, ¢, f, g &c. Sit differentiarum illarum numerus
17,89 locus quem intercalare oportet x, terminus intercalaris xy, et regrediendo
ab ultima differentia puta g et ab ultimo terminori ex quibus differentia illa
ax Gx . e—l—-_ﬁXFx=g. d_ngx:r. c_rxDx:
n—1 . n—2 n—3

colligebatur puta G, fac f+2——

sxCx £x Bx . ..
iyl A— m=v,(3ﬁ) pergendo semper juxta tenorem progressionis

h—

{30} An unfinished first continuation reads ‘pracedentes regfule applicari possint?]’ (the
preceding rules [can be applied?T).

(31) Read “21° (compare note (20} above). This paragraph essentially repeats Rule 6 of
the preceding piece (see §2: note (34)),

(32) As we would expect {see §2: note (16)) Newton first wrote ‘interpolari’ (interpolated).
The subsequent alteration is bewildering.

(33) Newton has cancelled a following passage, inserting its equivalent below: “sinte
terminorum differentiz per intervalla terminorum quibus respondent diviseay,; primee quidem
b, b2, b3, &c, secunde ¢, ¥, %, &c, tertie d, 4%, d% &cp,) quarte e, €2, & &c & sic ad ultimas,
Hoc est.” Observe in sequel that the end-points 4, B, C, D, ... of the lines 4p, Bq, Cr, Ds, ...
are used to denote their magnitude. The end-point W of the line ABC ... apparently denotes



[1, 1, §3] Approaches to finite differences A7

always decrease in a regular way. In this manner a bisection procedure may be
employed until®? the fourth differences prove to be less than 32.6D

Other rules of this kind might be presested, but I would prefer to embrace
everything in one single general rule and show how any series you wish may be
intercalated®® in any place commanded. Let the series be exhibited by the lines

Ap, Bq, Cr, Ds, Et, Fv, Gu, ... raised 1 ‘ | ! L 1

at right angles to the line AG,and the 4 B G D E 1 F G
intervals of the terms by the parts AB, by by by By by be
BC, CD, DE ... of that line.®® Make 51 €2 3 6y s
A—B b B-—-C b C—-D 5 4 A
3 =t s " b ™ Woe o

. _ — A S
very likewise b% 2,2 =y, %P% = €3, &
bg—b €4—F€ Co—C €g—F€ d,—d.
—%—@5 = gy eun) next—%lﬂﬁz = dl’é?‘}f = dz,%gﬁf = d, ...; further %AEa = ¢,
df%; g"" = ¢, ... then %}j—;? — f, .-, and so on in sequel till the work is finished,

dividing always first differences by the intervals of the terms whose differences
they are, second ones by half of the two corresponding intervals, third ones by
a third of the three corresponding and so forth until the difference in the final
place be slight enough.® When this is accomplished, take the Jeading quantities

both of the terms and the differences, 4, by, €15 15 1 fis G15 ---» and let those
differences be 7 in number,® the place it is required to intercalate call x, the

term to be intercalated ay; then, going backwards from the last difference, say

gy, and from the last of the terms, say G, from which that difference was gathered,

Ex
=y, g —TX =,

Gx Fx
ma‘ke .f‘l—'l_glx'_n—:p’ gl+.p><n__1:q3 dl__qxn 2 n—23
Cx Bx
bl——sx-——i:t, A—tXF

— 3,89 proceeding always following the sense of

the last ‘known’ quantity to be interpolated (X, Y and Z being inappropriate for the purpose,

in context at least}.
(34) In continuation Newton first wrote - puta non major unitate® (suppose not greater than
a unit), then replacing it by the unfinished phrase “puta minor sit quam’ (suppose it less
than...). A following cancelled amplification at this point reads ‘Nam. cum B, b8, B &c
ione mediorum punctorum inter 4, B, C,

respondeant medijsy, interstare supponantur e reg
D, &cete, 3 ¢* &ce regione mediorum punctorum inter b, b2, b3, &c. Distantia terminorur

b & B%, existens sumima distantiarum hinc inde a B, erit 34B+3BC. [&c]® (For since
by, by, by, - correspond to means, let them be supposed to stand between in line with the
mid-points between A,B,C, D, ..., and 6y, Gy Gy -+ in line with the mid-points between
by, bg, by, ... The distance of the terms by and b, being the sum of their distances either way

from B, will then be L{AB+ BC), [and s0 onl.)
(35) Below (and In Newton’s diagram) # is taken equal to 6.




In more algebraic terms: one starts from a function of
T1, T2, ... (the interpolation points), and for each pair

r;, T;11, one defines an operator on polynomials (a
divided difference) :

f% faz — f(---7$i7$i+1,--.)—f(...,le,a:i,...)

Ly — Ti+1

and one iterates (functions of z; are functions of degree 0
in ro, 3, ..., the Newton calculus is indeed a multivariate

calculus !).



More generally, and more simply, one uses operators
141,715, ... on polynomials. Each T; acts on x;, x;11 only,
and commutes with multiplication with symmetric
functions in x;, x; 1. It is therefore sufficient to define its

action on a basis, say 1, ;1.

Here are 5 examples :
1 1 0 1 1 t
Tit1 X; —1 0 5137;—|—£IZ7;_|_1—1 X;

S,, Schubert Demazure Grothendieck Macdonald




I shall only speak of Schubert and Macdonald.
What is the problem 7

e Find linear bases of the ring of polynomials in

Llyeeoyn
e Generate their elements
e xpand every polynomial in these bases

e Recover the multiplicative structure



Starting point: monomial, denoted exponentially :

{z¥ =a* - axln v e N

Two other bases (triangular, but not with respect to the

same order) :
Schubert {Y, : v € N*} & Macdonald {M, : v € N"}.

One specializes into spectral vectors :
(v)  (components are variables y;, for Schubert),

(v)  (components are some t'q’, for Macdonald).



Definition: Y, et M, are the only polynomials of degree
lv| such that

Yo((u)) =0 and M, ({u)) =0,

for each u : |u| < |v|, u #v ,

plus normalization conditions

The number of vanishing conditions is equal to the
dimension of the space minus 1, no wonder that such
polynomials exist | But this the specific choice of the
spectral vectors which makes all the beauty and
fruitfulness of the theory !



To define the spectral vectors in the Schubert case, one
needs a bijection between integral vectors and
permutations, the code of a permutation: Given o € Gy,
its code v is the sequence of number of inversions due to

01,09, ..., l.e.
vii=#{j:j>i&o; >0}
Then, one defines

<?)> — [y017y027y037'“7]

i.e. instead of v, one will specialize into the permutation

such that v is its code.



To normalize, one chooses the inversions of the

permutation, i.e. one requires that

Yv(<v>) = @(U) .= H (yUz' o ij)

1<J,0;>0;

For example, 0 = [3,5,1,4, 2] has code v = [2,3,0,1,0]
and

m(v) = (y3 —y1) (W3 — v2)(ys — ¥1)(ys — ya) (5 — y2)(Ya — y2)

Supposing known Y, with v; > v;.1, one will deduce Y,,,

with u = [v1,..., V1,001, 0;—1, ..., Un].



Indeed, one writes Y, = f + x;9, f,g € Gym(x;, x;11).

The equations Y, ((v)) = m(v), Y, (((u)) = 0, which are
M) = £((0)) + ()ig (1)), 0 = F({v)) + (w19 (o))
imply that g be such that ¢g((v)) = g((u)) = M(u), and it
is not difficult to check that the vanishing conditions are
still satisfied.

In summary, g = Y,,0; is the new Schubert polynomial,
and divided differences provide a recursion between

Schubert polynomials.



Initial case: dominant vectors, i.e. v1 > vy > -+ > vU,,.

One defines |
Yv — H H(CEZ — yj)

i=1j=1
Since this is a product of linear factors, it is not difficult
to check the vanishing conditions, together with the

normalization condition.



For v € N™, let 0V be a product of divided differences
such that Y,0¥ = Yy, . Then, for every other Y,,, either
Y, 0" is 0 or equal to Y,,, with w # [0...0]. This

elementary observation suflices to extend Newton’s

interpolation to the case of several variables.
Theorem. For every f € Pol(x,y), one has

F =3 Fx)0°]_, Ve

veEN™

Proof: Sufficient to test the statement on the Schubert
basis. Since one specializes into x =y = (0...0), only the
term Yy, 0((0...0)) =1 survives !



We need new spectral vectors for Macdonald.

When A € N” is dominant,
the spectral vector (\) is [t"~1gt, ..., % "].

Otherwise, if v = Ao (0 minimal), one defines

For example, (3,3,0) = [qStZ,qgtlathO]a
(3.0,3) = [¢*12,¢°1°, 1], (0. 3,3) = [¢°1°, ¢*1%, ¢*t'].



Instead of divided differences, one uses the Hecke algebra
which acts by 17; =1, x;.11; = x;.

The operators T; are not sufficient, one needs an affine
operation. One takes an infinite set of variables x;,
putting x;,, = ¢"x;, with a second parameter q.
Similarly, v € N must be thought as an infinite vector :
Vidrn =V +7, 17 € 4.

One now has a translation 7 and its inverse 7 = 71 :

T o Xf — Li41 5 Uy — VUit1



Definition. The Macdonald polynomial M,, v € N" is
the only polynomial of degree |v| such that

My((u)) = 0, uzov, |ul <

Vi

M’U — xvq_zz(2)_|—

Existence and unicity are proved by studying the
compatibility of vanishing conditions with respect to the

action of 7} or 7.



One writes M, = f + x;119, with f,g € Gym(z;, z;11).
Since M, ((v)s;) =0, M, ({(v)) # 0, there is unique
constant ¢ such that 7; 4+ ¢ exchanges the two

specializations :

M, — F:=t1f+x;9g+c(f+Tit19)
and F((v)s;) #0, F({(v)) =0.

In final :

_ —1




The affine operation is no more complicated to follow.
The polynomial M,7 inherits all the vanishings of M,,.
However v = [v1,...,v,] = 0T = [va, ..., Uy, U1 +1]
increases degree, M, has more vanishings to satisfy, but
this is provided to by the linear factor.

In final

For example,

Moss (1, 22, 23) = Maos(23/q, 21, 2) (x3 — 1)



What kind of applications 7 I shall give one to physics, to
illustrate that vanishing conditions are not restricted to
the mathematical world.

One wants to describe the space of polynomials in degree

6 in x1,...,xg, which vanish in all triples

[xiaxjaxk] — [t27t7 1}7 1< g < k



Answer : The space is 5-dimensional, with basis

M>10210, M212010, M221010, M212100, M221100, Specialized in
q=1/t>.
Indeed, one finds that

M210210’q:1/t3 = A¢(21, T2, 23) At(T4, T5, Tp)

with A :=]],.;(tz; — x;) the RHS satisfying the
required vanishing conditions to be a Macdonald
polynomial, though it is homogeneous (some care needed,

q is not generic!).



The Hecke algebra generate then a 5-dimensional space
which is an irreducible representation (deforming the
Specht representation of the symmetric group
corresponding to the partition |2, 2, 2]). Because of the
specialization of ¢, the usual vanishing conditions on
Macdonald polynomials imply the vanishing on triples
t?,t,1], and conversely for this degree.

The physical model which is supposed to be studied is the
XXZ spin chain model with periodic boundary conditions,
or the Quantum Hall effect, as well as polynomials
solutions of the Quantum Knizhnik-Zamolodchikov
equation. You can choose ! I prefer the formulation:

79

“Studying the rule 1TZ = t, ZIZ‘i_|_1TZ' == Z;.



