STORIES ABOUT SPETSES

MICHEL BROUÉ

A group of Lie type over a finite field \mathbb{F}_q of cardinal q (like $\operatorname{GL}_n(q)$, or $\operatorname{Sp}_{2n}(q)$) appears often as the specialization at x = q of "something" depending on an indeterminate x.

For example,

- the order of $\operatorname{GL}_n(q)$ is the evaluation at x = q of the polynomial $O_n(x) := x^{\binom{n}{2}} \prod_{i=1}^n (x^i 1),$
- the degrees of its unipotent characters χ_{λ} (for $\lambda \vdash n$) are also evaluations at x = q of some polynomials $\text{Deg}_{\lambda}(x)$, which do divide the order $O_n(x)$,
- etc...

This is still a real mystery : there is no field \mathbb{F}_x of "cardinal x" which would allow us to speak of $\mathrm{GL}_n(x)$.

Although $GL_n(-q)$ makes sense. Even more : $GL_n(-q) = U_n(q) \dots$

But the mystery became thicker when we realized, 23 years ago – it was during a congress on the Greek island named Spetses –, that there are more general objects depending on x, looking like Lie type things, which behave like $\operatorname{GL}_n(x)$ but which do **not** specialize to a group or whatever for $x = \pm q$. This was the beginning of the "Spetses story".

Date: May 22nd, 2019.